Monotonicity of Primal and Dual Objective Values in Primal-dual Interior-point Algorithms

نویسندگان

  • Shinji Mizuno
  • Michael J. Todd
  • Levent Tunçel
چکیده

We study monotonicity of primal and dual objective values in the framework of primal-dual interior-point methods. The primal-dual aane-scaling algorithm is monotone in both objectives. We derive a condition under which a primal-dualinterior-point algorithm with a centering component is monotone. Then we propose primal-dual algorithms that are monotone in both primal and dual objective values and achieve polynomial time bounds. We also provide some arguments showing that several existing primal-dual algorithms use parameters close to one that almost always improves both objectives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Monotonicity of Primal - Dual Interior - Point Algorithms for Semide nite Programming Problems ?

We present primal-dual interior-point algorithms with polynomial iteration bounds to nd approximate solutions of semidenite programming problems. Our algorithms achieve the current best iteration bounds and, in every iteration of our algorithms, primal and dual objective values are strictly improved.

متن کامل

ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming

 Abstract  We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...

متن کامل

Interior-Point Algorithms Based on Primal-Dual Entropy

We propose a family of search directions based on primal-dual entropy in the context of interior point methods for linear programming. This new family contains previously proposed search directions in the context of primal-dual entropy. We analyze the new family of search directions by studying their primal-dual affine-scaling and constant-gap centering components. We then design primal-dual in...

متن کامل

Generalization of Primal-Dual Interior-Point Methods to Convex Optimization Problems in Conic Form

We generalize primal-dual interior-point methods for linear programming problems to the convex optimization problems in conic form. Previously, the most comprehensive theory of symmetric primal-dual interior-point algorithms was given by Nesterov and Todd 8, 9] for the feasible regions expressed as the intersection of a symmetric cone with an aane subspace. In our setting, we allow an arbitrary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1994